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On the relaxation of infinite-range spin glasses 
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D-97074 Wurzburg, Germany 

Received 26 June 1995 

Abstract. The relaxation of the Shernngton-Kirkpatrick model far spin glasses is studied at 
low temperatures. A recently developed numerical method is used by which an infinitely large 
system is simulated. hence hnite size effects are avoided. For pxallel dynamics the decay of the 
energy as well as of the magnetization is investigated. For low temperatures we hnd evidence 
for a relaxation into a state which is chaacterized by non-equilibrium values of the energy and 
a non-vanishing remanent magnetization. 

1. Introduction 

In thermal equilibrium the infinite-range spin glass (the Shemngton-Kirkpatrick (SK) model 
[ 11) is characterized by infinite energy barriers and non-ergodic behaviour below the critical 
temperature [Z]. But in a typical experiment the system is prepared in a state far from 
equilibrium and relaxes by thermal noise and decay of energy. At zero temperature the 
dynamics always decreases the energy and therefore gets trapped in metastable states [3]; 
hence the system decays to a state with an energy much higher than that of the ground state 
and with a non-zero remanent magnetization [4,5]. For non-zero temperatures, however, the 
scenario is less clear. There still exists an exponentially large number of metastable states 
with energy values much higher than the equilibrium value [7]. But to our knowledge it is 
not hown whether these metastable states are separated by infinitely high energy barriers 
from the equilibrium configuration and whether the system actually gets trapped in such 
states. Hence, the question remains open whether at non-zero temperatures the system 
approaches a state with non-zero remanent magnetization and higher energy than in thermal 
equilibrium. 

Note that even the infinite-range king ferromagnet has stable states far from equilibrium 
with high energy and non-zero memory to the initial state. If at low temperatures a 
small positive magnetic field is applied, an initial state with a sufficiently large negative 
magnetization evolves towards a metastable state with negative magnetization and a higher 
energy per spin than in equilibrium. This metastable state is separated by an infinite-energy 
barrier from thermal equilibrium. Whether this scenario extends to spin glasses with an 
infinite number of metastable states is the subject of our present investigation. 

While previous numerical results [5,  61 have indicated that the SK model decays to 
thermal equilibrium for non-zero temperatures, recent simulations have shown that some 
properties of the model depend strongly on the size of the system [4]. Therefore we use 
the method proposed in [91 to study the infinitely large system. The method combines the 
dynamical functional approach, which allows us to perform the limit N + 60 exactly, and 
a Monte Carlo simulation of the resulting stochastic single-particle equations. In [ l l ]  the 
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approach was used to examine a variant of the Shenington-Kirkpatrick model for spin 
glasses. The phase transition as a function of the asymmetry in the random couplings [IO] 
was confirmed and investigated in detail. In the present paper, we extend the method to 
non-zero temperatures in order to investigate the temporal development of the energy as 
well as of the magnetization. 

Independently, Ferraro 117.1 performed the same extension to non-zero temperatures in 
the case of symmetric couplings, using a ‘trajectory scaling’ (see below). His and our 
findings concerning the energy agree very well. Furthermore, we investigated the response 
function and the remanent magnetization of the system in detail. The latter was assumed to 
he zero from the outset in [121. 

The next section gives an introduction to the mean-field Monte Carlo method of Eillfeller 
and Opper. In section 3 we extend the method to non-zero temperatures and derive the 
energy of the system. The results of the simulations are given and discussed in section 4. 
Section 5 contains concluding remarks. 

2. Mean-field Monte Carlo method 

We consider a variant of the SK model which consists of N king spins Si = & I .  Every 
spin Sj is connected to all other spins S, with i c j by independent Gaussian couplings 
J j j  with zero mean and variance I I N .  We allow for asymmetry in the matrix of couplings 
described by the parameter 4: 

(JijJji)J = VIN (1) 

where the brackets denote an average over the distribution of couplings. The couplings are 
fully antisymmetric if q = - 1  and totally uncorrelated if q = 0. Symmetric couplings as 
in the SK model correspond to q = 1. 

Instead of directly simulating the system of dynamical equations 

Sj(t + 1) = sign[hi(r)] i = I ,  . . . , N (2) 
with the internal fields 

where all spins are updated in parallel, EiDfeller and Opper [9, 1 I] follow the dynamical 
functional approach [ 131. This allows us to perform the average over the random couplings 
Jj, and to transform the remaining expression using saddle-point methods, which are exact 
in the thermodynamic limit N -+ CO. The result is a system of stochastic dynamical 
equations 

where the correlations of the time-dependent Gaussian noise variables @(t) and the response 
function K ( t .  s) are determined by the saddle-point equations as 

( 5 )  
( @ ( S ) O ( T ) ) O  = C(S, T )  = ( S ( S ) S ( T ) ) O  

K ( ~ , s )  = (as( t ) /aw)m. 
For a full derivation of the dynamical singleparticle equations (4), (5 )  and a detailed 
description of the Monte Carlo procedure used to simulate these equations see [ I l l .  
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3. Extension to non-zero temperatures 

In order to include noise in the dynamical single-particle equations, wc add an independent 
random variable r(r)  to the internal field 

S(t -I- 1) = sign[h(t) + r0)1 (6) 
where r ( t )  is generated according to 

1 1 - X ( f )  
r ( t )  = -In - with x ( r )  equally distributed in [O, I ] .  (7) 

In the following the asymmetry q is set to 1. In this case the dynamics obeys detailed 
balance and the noise parameter ,9 can be interpreted as the inverse temperature ,6 = 1 / T .  
In thermal equilibrium, it  leads to a Gibbs distribution of the spin configurations with the 
partition function [14, 1.51: 

2s [ X V )  1 

In equilibrium, the mean energy per spin of the system is given by 

( E / N ) ~  = - I / N  a In z/ag = (tanh[Bh,] / z , ) ~ .  (9) 
Using the Monte Carlo procedure mentioned above, the time-dependent energy can be 
calculated from 

(10) 

In order to compare the energy of the system extrapolated to infinite times e, = 
h,-, e(t) with results of equilibrium statistical mechanics, the free energy of the system 
with the partition filnction (8) should be derived using replica theory. We performed the 
replica symmetric calculation following Fontanari and Koeberle [ 161 and found that the 
parallel SK model (or Little model [17]) follows the same thermodynamics as the sequential 
SK model, but that the free energy is twice the original one. This result gives further evidence 
for the conjecture 118, 121 based on numerical findings 1181 that the full hierarchical solution 
of the SK model is-up to a factor of two-also valid for the Little model (equation (8)). 

e(?) = E ( t ) / N  = - ( tanh[ph(r)Jh(~))~ = -(sign[h(t) + r ( r ) J h ( f ) ) ~ , ,  . 

4. Results and discussion 

Using the Monte Carlo procedure described in [ I l l  we simulate the single-particle 
equations (6) with the internal fields given by (4). The decay of the energy is calculated 
for the first 130 time steps for various values of the temperature. In order to estimate the 
averages over the random Gaussian variables a, occurring in the saddle-point equations (5). 
we simulate NT = lo6 trajectories, starting from a fully magnetized state S(t = 0) = 1 for 
all trajectories. In the following all fits were done in the temporal range from t = 20 to 
130. The results could be fitted well by the function 

(11) 
where the parameters a and e, are functions of the temperature. Figure 1 shows a ( T ) .  
The resulting extrapolated values e ,  are displayed in figure 2 together with the replica 
symmetric solution and the solution of the full replica symmetry breaking equations [19]. 
The latter was taken from [I21 (figure 3). As expected, for T = 0 the energy e, is 
higher than the corresponding equilibrium value. This is consistent with the remanent 
magnetization mIcm N 0.18, which was found, for example, in [9, 111. Also for low (but 
non-zero) temperatures the equilibrium values are not reached. Surprisingly, the simulated 

e ( t )  = constant x t-a -I- e, 
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Figure 1. The temperatwe dependence of the 
exponenr a. The error bar is estimafed from fen 
independent rnns (3~). 

Figure 2 The extrapOlaed values of the energy 
(stars) as a function of the temperature. The 
error bar as a result of ten independent IUUI~S for 
T = 0.2 is smaller than the symbol size, The 
broken c w e  represents the replica symmetric 
solution. whereas the full cuwe shows the 
numerical solution of the replicaequations [I91 
and was taken from [12]. 

Figure 3. The decay of the magnetizaion for 
different temperatures. The full c w e s  display 
the corresponding fit functions. 

energy e, shows a non-monotonic behaviour as a function of the temperature, which 
contradicts equilibrium theory. On the other hand, the simulations are in good agreement 
with equilibrium theory for temperatures T 2 0.6. Note that the number of metastable 
states (solutions of the TAP equations) drastically decreases at T N 0.6 [7]. 

The same non-monotonic behaviour of e, at low temperatures was found by Ferraro, 
who assumed a linear dependence of the timedependent energy on the inverse of the number 
of trajectories A$ [12]. Using Nr = 8000 and 16000 he could not calculate the value for 
zero temperature, since the system freezes after a short time for these small numbers of 
trajectories. He explains the deviation from the equilibrium values by a further (very slow) 
relaxation with the consequence of a non-universal exponent a. Looking at the relaxation 
of the magnetization and the behaviour of the response function we suggest a different 
interpretation (see below). 
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Figure 4. Temperamre dependence of the 
exponent b. The error bar is estimated from ten 
independent runs ( 3 ~ ) .  Up to the temperature 
T = I the power law was fitted; for higher 
tempemtures an additional exponential factor had 
to be included. At the temperatures T = 0.95 
and T = T, = I the exponents b for both fits 
coincide. 
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Figure 5. 

estimated from ten independent runs (30.). 

The remanent magnetization as a 
0.0 0.2 0.4 0.6 0.8 1.0 fumion of the temperature. The emor bar is T 

The magnetization describes the system's memory of its initial state 

m(t) = (S(0)W)Q. (12) 

In equilibrium the system should be completely independent of its initial configuration or 
in other words: the equilibrium state is characterized by a zero remanent magnetization 
m, = lim,,,m(t) = 0. 

The decay of the magnetization for the first 130 time steps is displayed in figure 3 for 
various temperatures. Note, that the magnetization vanishes at uneven times [ l l ] ,  which 
is not shown in figure 3. The non-zero part of the magnetization reveals the following 
relaxation behaviour: 

constant x t-b(+ma) for O < T 5 1  
m(t) = 1 constant x t-bexp[-t/r] for T 2 1 

where the parameters b, 7 and m, are again functions of the temperature-as displayed 
in figure 4 for the exponent b. At a temperature T n. 1 we find a transition in 
the relaxation behaviour of the magnetization from an algebraic decay to one with 
an additional exponential factor, in agreement with the critical temperature T, = 1 
predicted by equilibrium theory. In contrast to [I21 we allow-also in the case 
of non-zero temperatures-for an additional parameter corresponding to the remanent 
magnetization. Doing so, we find a non-zero remanent magnetization m, which slowly 
decays to zero with increasing temperature (figure 5). Up to the critical temperature a 
memory of the initial state remains, which indicates a relaxation into a non-equilibrium 
state. 
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Figure 7. Phase diagram as a function of 
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T, Below the broken CUNe the remment 

0.2 

o'ol,o 0.9 0.8 0.7 0.6 0.5 magnetization is found io  be different from zero 

h 

%\ ', 

D m, # O .  

We have investigated another quantity which gives further evidence for a non-zero 
remanent magnetization at low temperatures. The memory effect to the initial conditions 
at low temperatures is also reflected in the behaviour of the response function K ( t ,  s). As 
can be seen from (5), this function describes the average response of the magnetization at 
time t to small variations of an external field at a previous time s. In figure 6 the response 
function K ( t ,  t - A t )  at low temperature (T = 0.2) is displayed as a function of the time 
difference A? = t - s for various times t and averaged over ten independent runs. The 
system responds strongly to variations at times s close to time t .  whereas intermediate times 
do not influence the system. But a significant increase of K at large At can be observed, 
indicating a stronger memory to the initial conditions. For high temperatures, memory 
effects are short range and K decays afLer a few time steps At. Moreover, the fact that the 
response functions are identical at large times s (small At)  for all displayed times ? reflects 
a stationary behaviour, i.e. a dependence on time differences only. 

We extended our investigations of the remanent magnetization at non-zero temperatures 
to the asymmetric case q < 1. In a region of temperatures T 5 1 and values of the 
asymmetry parameter q > 0.825 (figure 7) we find the same behaviour as described 
above, namely a non-vanishing remanent magnetization and a memory effect in the response 
function K. 

Furthermore, we studied the dependence on the number of trajectories in the range 
IO4 < NT < 3.2 x 16. For high numbers of trajectories (3.2 x IO5, 1.6 x lo5) we find 
clear deviations from a linear dependence of the time-dependent energy (or respectively 
magnetization) on I/NT which was suggested in [12]. These deviations may be responsible 
for the quantitative differences concerning the values of the exponents a. 
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5. Conclusion 

In conclusion, we have examined parallel non-equilibrium dynamics of the SK model and 
find evidence for a relaxation into a state characterized by a non-zero remanent magnetization 
and a non-equilibrium value of the energy for low but non-zero temperatures. This indicates 
that spin glasses relax to stable states far from thermal equilibrium. 
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